
augment-auto
Release 0.1.0

Aug 21, 2020

Contents

1 Installation 3

2 Features 5

3 LICENSE 13

i

ii

augment-auto, Release 0.1.0

A python image augmentation library based on opencv and numpy. It can be used for augmenting images in both
image classification and object detection tasks. Many different techniques of augmentation are supported, which
can be clustered into three major types - geometric transformations, photometric transformations and kernel-based
transformations. Library has support for images with bounding boxes as well.

Contents 1

augment-auto, Release 0.1.0

2 Contents

CHAPTER 1

Installation

• Install using pip:

pip install augment-auto

• Install by building from scratch:

git clone https://github.com/keshavoct98/image-augmentation
cd image-augmentation
python setup.py install

3

augment-auto, Release 0.1.0

4 Chapter 1. Installation

CHAPTER 2

Features

1. Geometric Features - Image augmentation with geometric transformation of images.

• crop(img, point1, point2, box = None) Returns cropped image. Image is cropped using
point1(x1, y1) and point2(x2, y2).

1. img = numpy.ndarray Image to be cropped.

2. point1 = tuple of int initial crop coordinates in the format - (x1, y1).

3. point2 = tuple of int final crop coordinates in the format - (x2, y2).

4. box = list, default = None Coordinates of bounding box in the format - (x1,y1,x2,y2).
If bounding box coordinates are passed, new coordinates are calculated and returned
along with output image.

• rotate(img, angle, keep_resolution = True, box = None) Returns image rotated at the given
angle.

1. img = numpy.ndarray Image to be rotated.

2. angle = integer or float value of angle at which image is to be rotated.

3. keep_resolution = bool, default = True If True, resolution of image remains same after
rotation, else resolution is changed.

4. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, new coordinates are calculated and returned along with output
image.

• scale(img, fx, fy, keep_resolution = False, box = None) Returns scaled image.

1. img = numpy.ndarray Image to be scaled.

2. fx = integer or float scaling value for x-axis.

3. fy = integer or float scaling value for y-axis.

4. keep_resolution = bool, default = False If True, resolution of image remains same after
scaling, extra region is cropped out.

5

augment-auto, Release 0.1.0

5. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, new coordinates are calculated and returned along with output
image.

• shear(img, shear_val, axis = 0, box = None) Returns sheared image along given axis.

1. img = numpy.ndarray Image to be sheared.

2. shear_val = integer or float shearing magnitude for given axis.

3. axis = {0,1}, default = 0 0 for shear along x-axis, 1 for shear along y-axis.

4. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, new coordinates are calculated and returned along with output
image.

• translate(img, tx, ty, box = None) Returns translated image.

1. img = numpy.ndarray Image to be translated.

2. tx = integer or float translation magnitude along x-axis.

3. ty = integer or float translation magnitude along y-axis.

4. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, new coordinates are calculated and returned along with output
image.

Geometric Transformations

img = cv2.imread('images/3.jpg')

img_new = crop(img, point1 = (100, 100), point2 = (450, 400))

img_new = rotate(img, angle = 15, keep_resolution = True)

img_new = scale(img, fx = 1.5, fy = 1.5, keep_resolution = False)

img_new = shear(img, shear_val = 0.2, axis = 1)

img_new = translate(img, tx = 50, ty = 60)

6 Chapter 2. Features

augment-auto, Release 0.1.0

Geometric Transformations with bounding box

img = cv2.imread('images/0.jpeg')
bbox = [581, 274, 699, 321]

img_new, bbox_new = crop(img, point1 = (100, 100), point2 = (650, 400),
→˓box = bbox)

img_new, bbox_new = rotate(img, angle = 15, keep_resolution = True, box =
→˓bbox)

img_new, bbox_new = scale(img, fx = 1.5, fy = 1.3, keep_resolution =
→˓False, box = bbox)

img_new, bbox_new = shear(img, shear_val = 0.2, axis = 0, box = bbox)

img_new, bbox_new = translate(img, tx = 50, ty = 160, box = bbox)

7

augment-auto, Release 0.1.0

2. Photometric Features - Image augmentation with photometric transformation of images.

• brightness_contrast(img, alpha = 1.5, beta = 0) Returns image with new pixel intensities.

img_new = img * alpha + beta

1. img = numpy.ndarray Image whose brightness and contrast has to be modified.

2. alpha = integer or float, non-negative, default = 1.5 All pixel values of the passed im-
age are multiplied by value of alpha.

3. beta = integer or float, default = 0 Vaue of beta is added to all pixel values of the passed
image after multiplication of pixel values with value of alpha.

• colorSpace(img, colorspace = ‘hsv’) Returns image converted to the new colorspace. Three
types of colorspace are supported - HSV, YCrCb, LAB.

1. img = numpy.ndarray Image whose colorspace has to be converted.

2. colorspace = {‘hsv’, ‘ycrcb’, ‘lab’}, default = ‘hsv’ Colorspace to which image is to be
converted.

8 Chapter 2. Features

augment-auto, Release 0.1.0

• addNoise(img, noise_type = ‘gaussian’, mean = 0, var = 0.05, sp_ratio = 0.5, noise_amount = 0.02)
Returns image with added noise. Three different types of noise are supported - GAUSSIAN,
Salt n Pepper, Poisson.

1. img = numpy.ndarray Image to which noise has to be added.

2. noise_type = {‘gaussian’, ‘salt_pepper’, ‘poisson’}, default = ‘gaussian Type of noise
to add.

3. mean = int or float, (required only with noise_type = ‘gaussian’)., default = 0
Gaussian noise is generated using mean value.

4. var = int or float, non-negative, (required only with noise_type = ‘gaussian’)., default = 0.05
Gaussian noise is generated from the standard deviation calculated value of variance
provided.

5. sp_ratio = int or float, range :- 0 <= sp_ratio <= 1, (required only with noise_type = ‘salt_pepper’)., default = 0.5
Percentage of salt noise and pepper noise. if value passed is equal to 1, only salt noise
is present. Similarly if value is 0, only pepper noise is present.

6. noise_amount = int or float, non-negative, (required only with noise_type = ‘salt_pepper’ or ‘poisson’)., default = 0.02
magnitude of salt n pepper/poisson noise is calculated using noise_amount.

Photometric Transformations

img = cv2.imread('images/1.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img_new = brightness_contrast(img, alpha = 1.3, beta = 20)
img_new = brightness_contrast(img, alpha = 0.7, beta = -10)

img_new = colorSpace(img, colorspace = 'hsv')
img_new = colorSpace(img, colorspace = 'ycrcb')
img_new = colorSpace(img, colorspace = 'lab')

img_new = addNoise(img, 'gaussian', mean = 0, var = 0.08)
img_new = addNoise(img, 'salt_pepper', sp_ratio = 0.5, noise_amount = 0.1)
img_new = addNoise(img, 'poisson', noise_amount = 0.5)

9

augment-auto, Release 0.1.0

3. Kernel-based features

• blur(img, blur_type = ‘avg’, ksize = (5, 5), median_ksize = 5, gaussian_sigma = 0) Returns
blurred image. Three different types of blurring are supported - GAUSSIAN, Salt n Pepper,
Poisson.

1. img = numpy.ndarray Image to be blurred.

2. blur_type = {‘avg’, ‘gaussian’, ‘median’}, default = ‘avg’ Type of blurring to perform.

3. ksize = tuple of odd positive integers, (required only with blur_type = ‘avg’ or ‘gaussian’)., default = (5, 5)
kernel size used for average or gaussian blurring.

4. median_ksize = int, odd positive integer, (required only with blur_type = ‘median’)., default = 5
kernel size used for median blurring.

5. gaussian_sigma = int or float, (required only with blur_type = ‘gaussian’)., default = 0
Standard deviation used to calculate gaussian kernel.

• randomErase(img, size, box = None) A random rectangular region is erased and replaced by
mean value of image pixels. Returns modified image.

1. img = numpy.ndarray Image to be modified.

2. size = tuple of int Size of rectangular region to erase.

3. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, rectangular region is erased from the bounding box region.

10 Chapter 2. Features

augment-auto, Release 0.1.0

• randomCropAdd(img, size, box = None) A random rectangular region is erased and added to
another region of image. Returns modified image.

1. img = numpy.ndarray Image to be modified.

2. size = tuple of int Size of rectangular region to erase and add.

3. box = list Coordinates of bounding box in the format - (x1,y1,x2,y2). If bounding box
coordinates are passed, rectangular region is cropped from and added to the bounding
box region.

• sharpen(img) Returns sharpened image.

1. img = numpy.ndarray Image to be sharpened.

Kernel-based Transformations

img = cv2.imread('images/0.jpeg')
bbox = [581, 274, 699, 321]

img_new = randomErase(img, size = (100, 100))

img_new = randomCropAdd(img, size = (100, 100))

img_new = sharpen(img)

img_new = randomErase(img, size = (60, 40), box = bbox)

img_new = randomCropAdd(img, size = (60, 40), box = bbox)

img_new = blur(img, 'avg', ksize = (9,9))
img_new = blur(img, 'gaussian', ksize = (9,9), gaussian_sigma = 0)
img_new = blur(img, 'median', median_ksize = 11)

11

augment-auto, Release 0.1.0

12 Chapter 2. Features

CHAPTER 3

LICENSE

MIT License

Copyright (c) 2020 keshav sharma

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

13

	Installation
	Features
	LICENSE

